数

学

解答番号 1 ~ 55

解答にあたっての注意事項

- ① 分数形で解答する場合、それ以上約分できない形で答えなさい。
- ② 根号を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答えなさい。
- $\begin{bmatrix} I \end{bmatrix}$ 以下の空欄の $\begin{bmatrix} 1 \end{bmatrix}$ ~ $\begin{bmatrix} 17 \end{bmatrix}$ に入る数字を選択肢から1つずつ選びなさい。
 - (1) $\frac{1}{2}(5-\sqrt{2}-3\sqrt{3})(5-\sqrt{2}+3\sqrt{3})$ を計算すると、 $-\boxed{1}\sqrt{\boxed{2}}$ となる。

1 · 2

(2) $(x^2+x-4)(x^2+x-6)-48$ を因数分解すると、 $(x+3)(x-4)(x^2+x+5)$ である。

3 · 4 · 5

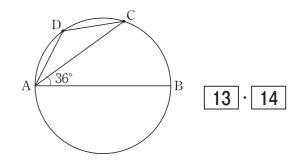
(3) $AB=1+\sqrt{3}$, $BC=\sqrt{6}$, CA=2 の $\triangle ABC$ があるとき, $\angle B=$ **6 7** ° である。

6 · 7

(4) a, b を定数とする。 $y=x^2-ax+b$ のグラフが 2 点(1, 4),(-1, 8)を通るとき,a= 8,b= 9 である。

(数学・第〔 [] 問は次ページへ続く)

(5) 次の9個の値からなるデータにおける第1四分位数は $\boxed{10}$ である。


5, 15, 25, 7, 9, 10, 16, 20, 14

10

(6) 大小 2 個のさいころを投げるとき、少なくとも 1 個は 4 以下の目が出る確率は、12 である。

11 · 12

(7) 右の図のように、線分 AB を直径とする円周上に、2点 C、D をとったとき、AD=CD、∠BAC=36°であった。このとき、∠ACD= 13 14°である。

15 · 16 · 17

選択肢

 $\left[\begin{array}{c} \Pi \end{array} \right]$ 以下の文章を読み、空欄の $\overline{\ 18}$ ~ $\overline{\ 26}$ に入る数字を選択肢から1つずつ選びなさい。

a, b を定数として、関数 $f(x) = x^2 - 2ax + b$ がある。

(1) a=2, b=5 のとき, 関数f(x)の最小値は **18** である。

18

(数学・第〔Ⅱ〕問は次ページへ続く)

(3) b = -2a + 6 とする。 $0 \le x \le 2$ における関数f(x)の最大値M を求めるには、a < 1 のときと $a \ge 1$

選択肢

 $m{\mathcal{P}}=0$ イ 1 ウ 2 エ 3 オ 4

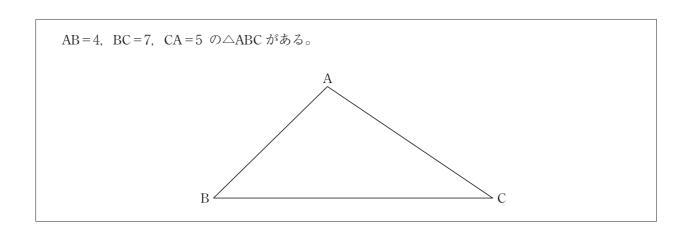
【 \blacksquare 】 以下の文章を読み、空欄の $\boxed{27}$ ~ $\boxed{40}$ に入る数字を選択肢から1つずつ選びなさい。

7人の生徒がいる。

- (1) この7人を3人、4人の2組に分ける方法は全部で2728通りあり、1人、2人、4人の3組に分ける方法は全部で293031通りある。27・2829・30・31
- (2) この7人を2人、2人、3人の3組に分ける方法は全部で32 33 34 通りある。

32 · 33 · 34

(数学・第〔Ⅲ〕問は次ページへ続く)


- (3) この7人をa, b, c, d, e, f, gとし, A, B, Cの3部屋に分けるとする。ただし、どの部屋にも少なくとも1人は入らなければならないものとする。
 - (i) Aの部屋には2人だけが入るような3部屋への入り方は全部で 35 36 37 通りある。

(ii) a, b, c が同じ部屋に入るような 3 部屋への入り方は全部で 38 39 40 通りある。

ただし、a、b、c の他に誰かが入っても入らなくてもよいものとする。

選択肢

 $\begin{bmatrix} \mathbf{IV} \end{bmatrix}$ 以下の文章を読み,空欄の $\boxed{\mathbf{41}}$ ~ $\boxed{\mathbf{55}}$ に入る数字を選択肢から1つずつ選びなさい。

(1) $\cos \angle BAC = -\frac{\boxed{41}}{\boxed{42}}$, $\triangle ABC$ の面積は $\boxed{43}\sqrt{\boxed{44}}$ である。

41 · 42 43 · 44

(数学・第〔Ⅳ〕問は次ページへ続く)

(2) 点 A から辺 BC に垂線を引き交点を D とするとき, $\cos \angle BAD = \frac{45\sqrt{46}}{47}$ である。また, $\triangle ABC$ の内心を I とし,直線 BI と辺 AC の交点を E.直線 BI と線分 AD の交点を F とする。

このとき、
$$\frac{\mathrm{EF}}{\mathrm{BF}} = \frac{\boxed{48}\boxed{49}}{\boxed{50}\boxed{51}}$$
 である。 $\boxed{45\cdot46\cdot47}$ $\boxed{48\cdot49\cdot50\cdot51}$

(3) △ABCの内接円と辺AB, AC, BCの接点をそれぞれG, H, Jとするとき, AG=AH, BG=BJ,

$$CJ = CH$$
 が成り立つ。これを用いると、 $GH = \frac{\boxed{52}\sqrt{\boxed{53}\boxed{54}}}{\boxed{55}}$ である。 $\boxed{52}\cdot\boxed{53}\cdot\boxed{54}\cdot\boxed{55}$

選択肢

数学おわり 解答番号 1 ~ 55

計 算 用 紙

2024年度 桃山学院大学

一般試験 学科試験型(前期)2日目 解答例

実施日 2024年1月21	日 科目	数学
---------------	------	----

解答番号	解答	解答番号	解答	解答番号	解答	解答番号	解答
1	力	16	ウ	31	力	46	+
2	ウ	17	ク	32	イ	47	ク
3	才	18	イ	33	ア	48	ウ
4	エ	19	ウ	34	力	49	コ
5	ウ	20	才	35	+	50	カ
6	才	21	1	36	エ	51	カ
7	力	22	力	37	ア	52	ウ
8	ウ	23	イ	38	イ	53	イ
9	力	24	+	39	力	54	カ
10	ケ	25	⊐	40	ア	55	カ
11	ケ	26	ウ	41	1	56	
12	⊐	27	エ	42	力	57	
13	ウ	28	力	43	才	58	
14	ク	29	1	44	+	59	
15	ウ	30	ア	45	ウ	60	